Sains Malaysiana 52(9)(2023):
2713-2723
http://doi.org/10.17576/jsm-2023-5209-19
Photoreforming
of Glycerol Catalyzed by CuO/TiO2 Supported on Hydroxyapatite
(Pembentukan
Semula Gliserol Pemangkin oleh Cuo/Tio2 Disokong pada Hidroksiapatit)
1Department of Science, Faculty
of Science and Technology, Prince of Songkla University, Rusamilae, Pattani,
Thailand
2Department of Food Science and
Nutrition, Department of Science, Faculty of Science and Technology, Prince of
Songkla University, Rusamilae, Pattani, Thailand
Diserahkan:
23 Mac 2023/Diterima: 15 Ogos 2023
Abstract
Waste bovine bones can be used as a source to
produce hydroxyapatite (HAp), which is a good organic adsorbent and
used as a support material for metal oxide photocatalysts. In this work, HAp powders were prepared from
calcination of bovine bones at 900 °C for 2 h and used as supporting
material for a TiO2 photocatalyst incorporating CuO. The hexagonal HAp
particles were characterized using Fourier transformed infrared spectroscopy
(FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The
50 wt% TiO2 and 1 wt% CuO/TiO2 supported on HAp photocatalysts
were synthesized by the co-precipitation method and finally calcined at
450 °C for 4 h. The synthesized HAp and catalysts were
characterized by FTIR, XRD, BET surface area analysis, SEM, and transmission
electron microscopy (TEM). The photocatalytic performance
of the synthesized catalysts was performed by photoreforming
of glycerol at room temperature using 100 mL of 0.5 M glycerol solution under
nitrogen atmosphere, irradiating with low-light intensity 20 W Mercury UV lamp
for 7 h. The gaseous products catalyzed by the synthesized catalysts were
analyzed using a gas chromatograph. The maximum
hydrogen gas production from photoreforming of glycerol at this condition was
obtained at 513.7 mmol gcat–1 without carbon dioxide detection
after catalyzing by CuO/TiO2/HAp catalyst.
Keywords: Glycerol; hydroxyapatite;
photoreforming; titania
ABSTRAK
Sisa
tulang lembu boleh digunakan sebagai sumber untuk menghasilkan hidroksiapatit (HAp), yang merupakan penyerap organik yang baik dan digunakan
sebagai bahan sokongan untuk fotokatalis oksida logam. Dalam kertas ini, serbuk HAp disediakan
daripada kalsinasi tulang lembu pada suhu 900 °C selama 2 jam dan digunakan
sebagai bahan sokongan untuk fotokatalis TiO2 yang menggabungkan CuO. Zarah HAp heksagon dicirikan menggunakan
spektroskopi inframerah Fourier berubah (FTIR), pembelahan sinar-X (XRD) dan
mikroskop elektron imbasan (SEM). 50 wt% TiO2 dan 1
wt% CuO/TiO2 yang disokong pada fotokatalis HAp
disintesis oleh kaedah pemendakan bersama
dan akhirnya dikalsinasi pada 450 °C untuk 4 jam. HAp dan pemangkin
yang disintesis dicirikan oleh FTIR, XRD, ANALISIS kawasan permukaan BET, SEM
dan mikroskop elektron penghantaran (TEM). Prestasi
fotokatalisis pemangkin yang disintesis dilakukan dengan pembentukan semula
foto gliserol pada suhu bilik menggunakan 100 mL 0.5 M. Penyelesaian gliserol di bawah atmosfera
nitrogen, mengairi dengan keamatan cahaya rendah 20 W Mercury UV lampu untuk 7
jam. Produk gas yang pemangkin oleh pemangkin
yang disintesis telah dianalisis menggunakan kromatograf gas. Pengeluaran gas
hidrogen maksimum daripada pembentukan semula gliserol dalam keadaan ini
diperoleh pada 513.7 mmol gcat-1 tanpa pengesanan karbon dioksida selepas pemangkin oleh pemangkin CuO/TiO2/HAp.
Kata
kunci: Gliserol; hidroksiapatit; pembentukan semula; titania
RUJUKAN
Akram, M., Ahmed, R.,
Shakir, I., Ibrahim, W.A.W. & Hussain, R. 2014. Extracting hydroxyapatite and its precursors from natural
resources. Journal of Materials Science 49(4): 1461-1475. https://doi.org/10.1007/s10853-013-7864-x
Arcanjo, M.R.A., Silva, I.J.,
Rodríguez-Castellón, E., Infantes-Molina, A. & Vieira, R.S. 2017. Conversion of glycerol into lactic
acid using Pd or Pt supported on carbon as catalyst. Catalysis
Today 279: 317-326. https://doi.org/10.1016/j.cattod.2016.02.015
Azri, N., Irmawati, R., Yda-Umar, U.I., Saiman, M.I. &
Taufiq-Yap, Y.H. 2022. Effect of different metal modified dolomite catalysts on
catalytic glycerol hydrogenolysis towards 1,2-propanediol. Sains Malaysiana 51(5): 1385-1398. https://doi.org/10.17576/jsm-2022-5105-10
Bano, N., Salwah Jikan, S., Basri, H., Adzila Abu Bakar, S.S. & Hussain Nuhu, A. 2017. Natural hydroxyapatite extracted from bovine bone. Journal of Science and Technology 9(2): 22-28. https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/1990
Barakat, N.A.M., Khil, M.S., Omran,
A.M., Sheikh, F.A. & Kim, H.Y. 2009. Extraction of pure natural hydroxyapatite from the bovine
bones bio waste by three different methods. Journal of
Materials Processing Technology 209(7): 3408-3415. https://doi.org/10.1016/j.jmatprotec.2008.07.040
Cheng, Z.H.,
Yasukawa, A., Kandori, K. &
Ishikawa, T. 1998. FTIR study of
adsorption of CO2 on nonstoichiometric calcium hydroxyapatite. Langmuir 14(23): 6681-6686. https://doi.org/10.1021/la980339n
Chong, R., Fan, Y., Du, Y., Liu, L.,
Chang, Z. & Li, D. 2018. Hydroxyapatite decorated TiO2 as efficient
photocatalyst for selective reduction of CO2 with H2O
into CH4. International Journal of Hydrogen
Energy 43(49): 22329-22339. https://doi.org/10.1016/j.ijhydene.2018.10.045
Das Lala, S., Barua, E., Deb, P. & Deoghare, A.B. 2021. Physico-chemical
and biological behaviour of eggshell bio-waste derived
nano-hydroxyapatite matured at different aging time. Materials Today Communications 27: 102443. https://doi.org/10.1016/j.mtcomm.2021.102443
El Bekkali, C., Bouyarmane, H., El Karbane, M., Masse, S.,
Saoiabi, A., Coradin, T. &
Laghzizil, A. 2018. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation
of ciprofloxacin and ofloxacin antibiotics. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 539: 364-370. https://doi.org/10.1016/j.colsurfa.2017.12.051
Escamilla, J.C.,
Hidalgo-Carrillo, J., Martín-Gómez, J., Estévez-Toledano,
R.C., Montes, V.,
Cosano, D., Urbano, F.J. & Marinas, A. 2020. Hydrogen
production through glycerol photoreforming on TiO2/mesoporous
carbon: Influence of the synthetic method. Materials 13(17): 3800. https://doi.org/10.3390/MA13173800
Foroutan, R., Peighambardoust,
S.J., Hosseini, S.S., Akbari, A. & Ramavandi, B. 2021. Hydroxyapatite biomaterial
production from chicken (femur and beak) and
fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. Journal of
Hazardous Materials 413: 125428. https://doi.org/10.1016/j.jhazmat.2021.125428
Galadima, A. & Muraza, O. 2016. A review on glycerol valorization
to acrolein over solid acid catalysts. Journal of the
Taiwan Institute of Chemical Engineers 67: 29-44. https://doi.org/10.1016/j.jtice.2016.07.019
Haider, A.J.,
Jameel, Z.N. & Al-Hussaini,
I.H.M. 2019. Review on: Titanium dioxide applications. Energy Procedia 157: 17-29. https://doi.org/10.1016/j.egypro.2018.11.159
Hernández-Barreto, D.F., Hernández-Cocoletzi,
H. & Moreno-Piraján, J.C. 2022. Biogenic
hydroxyapatite obtained from bone wastes using CO2-assisted
pyrolysis and its interaction with glyphosate: A
computational and experimental study. ACS Omega 7(27): 23265-23275. https://doi.org/10.1021/acsomega.2c01379
Hu, M., Yao, Z.,
Liu, X., Ma, L., He, Z. & Wang, X. 2018. Enhancement
mechanism of hydroxyapatite for photocatalytic degradation of gaseous
formaldehyde over TiO2/hydroxyapatite. Journal of the Taiwan Institute of Chemical Engineers 85: 91-97. https://doi.org/10.1016/j.jtice.2017.12.021
Karimi Estahbanati, M.R., Feilizadeh, M., Attar, F. & Iliuta, M.C. 2021. Current developments and future trends in photocatalytic glycerol
valorization: Process analysis. Reaction
Chemistry and Engineering 6(2): 197-219. https://doi.org/10.1039/d0re00382d
Khoo, W., Nor, F.M., Ardhyananta, H. & Kurniawan, D. 2015. Preparation of natural
hydroxyapatite from bovine femur bones using calcination at various
temperatures. Procedia Manufacturing 2: 196-201. https://doi.org/10.1016/j.promfg.2015.07.034
Kozlova, E.A.,
Gromov, N.V., Saraev, A.A., Kaichev, V.V., Gromov, N.V.,
Medvedeva, T.B., Saraev, A.A. & Kaichev, V.V. 2020. Comparative study of photoreforming
of glycerol on Pt/TiO2 and CuOx/TiO2. Materials Letters 283: 128901. https://doi.org/10.1016/j.matlet.2020.128901
LeGeros, R.Z. 1988. Calcium phosphate materials in restorative dentistry: A review. Advances in Dental Research 2(1): 164-180. https://doi.org/10.1177/08959374880020011101
Liu, R., Yoshida, H., Fujita, S. & Arai, M. 2014. Photocatalytic hydrogen production from glycerol and water
with NiOx/TiO2 catalysts. Applied Catalysis B: Environmental 144: 41-45. https://doi.org/10.1016/j.apcatb.2013.06.024
Liu, Y., Wu, M.,
Rempel, G.L. & Ng, F.T.T. 2021. Glycerol hydrogenolysis to produce 1,2-propanediol
in absence of molecular hydrogen using a Pd promoted Cu/MgO/Al2O3 catalyst. Catalysts 11(11): 1299. https://doi.org/10.3390/catal11111299
Lucchetti, R., Onotri, L., Clarizia, L., Di Natale, F.,
Di Somma, I., Andreozzi, R. &
Marotta, R. 2017. Removal of nitrate
and simultaneous hydrogen generation through photocatalytic reforming of
glycerol over “in situ” prepared
zero-valent nano copper/P25. Applied Catalysis B: Environmental 202: 539-549. https://doi.org/10.1016/j.apcatb.2016.09.043
Martínez, F.M.,
Albiter, E., Alfaro, S., Luna, A.L., Colbeau-Justin, C., Barrera-Andrade, J.M., Remita, H. & Valenzuela, M.A. 2019. Hydrogen
production from glycerol photoreforming on TiO2/HKUST-1 composites: Effect of preparation method. Catalysts 9(4): 1-12. https://doi.org/10.3390/catal9040338
Mohseni-Salehi, M.S., Taheri-Nassaj, E. & Hosseini-Zori, M. 2018. Effect of dopant (Co, Ni) concentration
and hydroxyapatite compositing on photocatalytic activity of titania towards
dye degradation. Journal of Photochemistry and
Photobiology A: Chemistry 356: 57-70. https://doi.org/10.1016/j.jphotochem.2017.12.027
Montini, T., Monai, M., Beltram, A., Romero-Ocaña,
I. & Fornasiero, P. 2016. H2 production by photocatalytic reforming of
oxygenated compounds using TiO2-based materials. Materials Science in Semiconductor Processing 42: 122-130. https://doi.org/10.1016/j.mssp.2015.06.069
Nguyen Thi Truc, L., Hong, S. & No, K. 2019. Evaluation
of the role of hydroxyapatite in TiO2/hydroxyapatite
photocatalytic materials. Photocatalysts - Applications and Attributes. March. IntechOpen. https://doi.org/10.5772/intechopen.81092
Peter Etape, E., John Ngolui,
L., Foba-Tendo, J.,
Yufanyi, D.M. & Victorine
Namondo, B. 2017. Synthesis and
characterization of CuO, TiO2, and CuO-TiO2 mixed oxide by a modified oxalate route. Journal of
Applied Chemistry 2017: 4518654. https://doi.org/10.1155/2017/4518654
Ramirez-Gutierrez, C.F., Londoño-Restrepo,
S.M., del Real, A.,
Mondragón, M.A. & Rodriguez-García, M.E. 2017. Effect of the temperature and sintering time on the thermal,
structural, morphological, and vibrational properties of hydroxyapatite derived
from pig bone. Ceramics International 43(10): 7552-7559. https://doi.org/10.1016/j.ceramint.2017.03.046
Safronova, T., Vorobyov, V., Kildeeva, N., Shatalova, T.,
Toshev, O., Filippov, Y., Dmitrienko,
A., Gavlina, O., Chernega, O., Nizhnikova, E., Akhmedov, M., Kukueva, E. & Lyssenko, K. 2022. Inorganic powders prepared from
fish scales. Ceramics 5(3): 484-498. https://doi.org/10.3390/ceramics5030037
Sang, H.X.,
Wang, X.T., Fan, C.C. & Wang, F. 2012. Enhanced
photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low
temperature route. International Journal of Hydrogen
Energy 37(2): 1348-1355. https://doi.org/10.1016/j.ijhydene.2011.09.129
Seadira, T.W.P., Sadanandam, G., Ntho, T.,
Masuku, C.M. & Scurrell, M.S. 2018. Preparation
and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of
glycerol. Applied Catalysis B: Environmental 222: 133-145. https://doi.org/10.1016/j.apcatb.2017.09.072
Singh, N., Chakraborty, R. & Gupta, R.K. 2018. Mutton bone derived hydroxyapatite supported TiO2 nanoparticles for sustainable photocatalytic applications. Journal
of Environmental Chemical Engineering 6(1): 459-467. https://doi.org/10.1016/j.jece.2017.12.027
Van Nguyen, T.T.,
Phung Anh, N., Ho, T.G.T., Pham, T.T.P., Nguyen, P.H.D., Do, B.L., Huynh, H.K.P. & Nguyen, T. 2022. Hydroxyapatite derived from salmon
bone as green ecoefficient support for ceria-doped nickel
catalyst for CO2 methanation. ACS
Omega 7(41): 36623-36633. https://doi.org/10.1021/acsomega.2c04621
Wang, C., Cai, X.,
Chen, Y., Cheng, Z., Luo, X., Mo, S., Jia, L.,
Lin, P. & Yang, Z. 2017. Improved hydrogen production from glycerol photoreforming over
sol-gel derived TiO2 coupled with metal oxides. Chemical Engineering Journal 317: 522-532. https://doi.org/10.1016/j.cej.2017.02.033
Yang, Z., Zhong, W., Chen, Y., Wang, C.,
Mo, S., Zhang, J., Shu, R. & Song, Q. 2020. Improving
glycerol photoreforming hydrogen production over Ag2O-TiO2 catalysts by enhanced colloidal dispersion stability. Frontiers in Chemistry 8: 342. https://doi.org/10.3389/fchem.2020.00342
Yin, H., Zhang, C., Yin, H.,
Gao, D., Shen, L. & Wang, A. 2016. Hydrothermal conversion of glycerol
to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction
kinetics. Chemical Engineering Journal 288: 332-343. https://doi.org/10.1016/j.cej.2015.12.010
*Pengarang untuk
surat-menyurat; email: saowapa.c@psu.ac.th
|